


Abstract Title	AdOx – a next-generation adsorption-oxidation process for the removal of organic micropollutants from municipal wastewater
Торіс	X Improving water quality
	O Resilient water systems
	O Circular solutions: Reuse, Recover and Recycle
	O Transitions in water, agro/food and energy
Challenges and Solutions	How to remove organic micropollutants (OMPS) from municipal wastewater efficiently?
	These OMPs come in a low concentration (μ g/L) and it is expensive to remove them from the mainstream of wastewater effluent.
	Our solution is to collect and concentrate the OMPs using adsorption and oxidize them in the sidestream. AdOx uses a novel adsorbent, high-silica zeolite granules, which has the similar range of pore sizes as the OMPs, in a reactor. The OMPs attached in the pores of the granules will then be oxidized using gaseous ozone after the reactor is drained and partially dried. This process limits the adsorption and oxidation of natural organic matters (NOMs) and is competitive with other, conventional treatment alternatives.
Author(s), highlight	1. N. (Nessia) Fausta, TU Delft, the Netherlands*
corresponding author	2. L.C. (Luuk) Rietveld, TU Delft, the Netherlands
	3. J.P. (Jan Peter) van der Hoek, TU Delft & Waternet, the Netherlands
	4. S.G.J. (Bas) Heijman, TU Delft, the Netherlands
	5. M. (Mingyan) Fu, TU Delft, the Netherlands
	6. F. (Fabien) Rioult, Ecovyst, Inc., the United States
	7. D. (Derek) Wong, Ecovyst, Inc., the United States
	*: corresponding author

AMSTERDAM INTERNATIONAL WATER WEEK

Abstract	Adsorption-Oxidation (AdOx) treatment is a new
	technology for the removal of organic micropollutants
	(OMPs), such as traces of pharmaceuticals and hygiene
	products, from wastewater treatment plant (WWTP-) effluent. These OMPs are present in low concentrations,
	but the accumulation is harmful for aquatic life in
	receiving surface water bodies and affects the quality of
	drinking water intake sources. AdOx uses high-silica
	zeolite granules as a novel adsorbent to trap and
	concentrate the OMPs, in a packed-bed down-flow reactor
	[1]. The frequently-scheduled <i>in-situ</i> regeneration is
	performed by injecting ozone gas into the drained- and
	partially dried-bed reactor to oxidize the adsorbed OMPs.
	This process enables long-term adsorbent utilization in a
	sustainable way, without producing harmful by-products,
	such as bromate. Figure 1 shows the process steps.
	The results from the lab adsorption experiments, both in
	batch and column, have shown that an average removal of
	OMPs of 80 – 85% were reached using various empty bed
	contact times (EBCT) from 6 to 20 min [2] [3] [4] [5] [6].
	The complete <i>in-situ</i> regeneration using ozone gas
	injection into the dried-bed reactor has also been validated
	in the lab [7] [8] [9]. Figure 2 depicts the results of six
	adsorption-regeneration cycles with an EBCT of 20
	minutes and 6 hours of ozone gas injection using a
	concentration of 90 mg/L. [9].
	Afterwards AdOx has been scaled-up into a pilot plant,
	based on promising feasibility study results for full-scale
	application [10]. It was designed using an EBCT of 10 min,
	taken as an average value from the lab experiments, and 3
	h of gaseous ozone injection with a concentration range of
	90-100 mg/L.
	The pilot plant integrates filtration and regeneration in a
	complete 1-week cycle, with 7 d of filtration and 8 h of the
	total regeneration time. It has been operated at WWTP
	Leiden-Noord under <i>Hoogheemraadschap van Rijnland</i> and takes its water from the secondary clarifier's effluent.
	In order to ensure that the removal capacity remains after
	long-term use, having strong and wear-resistant zeolite
	grains, is a key factor. The grain formation was carried out

	together with a zeolite producer as a partner company using the extrusion method. The trial granules are also being tested in the pilot plant. The results of the pilot plant, to be presented at AIWW , will give insights for full-scale demonstration/implementation and possibilities for optimization, both from the process steps and the granule development.
Figures/diagrams/illustrations	Adox-Influent (rom WWTP-effluent) Intermediates' biological degradation at the main WWTP (back to main WWTP) (back to main WWTP)

AMSTERDAM INTERNATIONAL WATER WEEK

	mechanisms," <i>Separation and Purification</i> <i>Technology,</i> p. 116152. https://doi.org/10.1016/j.seppur.2019.116152, 2020.
[3]	N. Jiang, M. Erdős, O. A. Moultos, R. Shang, T. J. H. Vlugt, S. G. J. Heijman and L. C. Rietveld, "The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study," <i>Chemical Engineering Journal,</i> vol. 389, no. https://doi.org/10.1016/j.cej.2019.123968, p. 123968, 2020.
[4]	Y. Doekhi-Bennani, N. M. Leilabady, M. Fu, L. C. Rietveld, J. P. van der Hoek and S. G. J. Heijman, "Simultaneous removal of ammonium ions and sulfamethoxazole by ozone regenerated high silica zeolites," <i>Water Research 188</i> , p. 116472. https://doi.org/10.1016/j.watres.2020.116472, 2021.
[5]	R. Hu, "Adsorption of Organic Micro-pollutants by Zeolite Granules: Bach and Column Studies. Master Thesis," Delft University of Teechnology, Delft. http://resolver.tudelft.nl/uuid:269fbf06-6714-436c- 852f-bd99e0ee7c1a, 2020.
[6]	S. Jiang, "Removal of Organic Micro-pollutants Present in the Effluent of Wastewater Treatment Plant by Zeolite Granules. Master Thesis," Delft University of Technology, Delft. http://resolver.tudelft.nl/uuid:b909784a-5d17-431d- abc7-7619eb64773a, 2022.
[7]	M. Fu, M. He, S. G. J. Heijman and J. P. van der Hoek, "Ozone-based regeneration of granular zeolites loaded with acetaminophen," <i>Separation and</i> <i>Purification Technology 256</i> , p. 117616. https://doi.org/10.1016/j.seppur.2020.117616, 2021.
[8]	M. Fu, J. Wang, B. Heijman and J. P. van der Hoek, "Removal of organic micropollutants by well-tailored granular zeolites and subsequent ozone-based regeneration," <i>Journal of Water Process Engineering</i> ,

vol. 44, no. https://doi.org/10.1016/j.jwpe.2021.102403, p. 102403, 2021.
[9] M. Fu, S. G. J. Heijman and J. P. van der Hoek, "Removal of organic micropollutants from wastewater effluent : Selective adsorption by a fixed- bed granular zeolite filter followed by in-situ ozone- based regeneration," <i>Separation and Purification</i> <i>Technology</i> , vol. 303, p. 122303, 2022.
[10] L. Rietveld, J. van der Hoek, S. Heijman, N. Fausta, M. Fu, N. Jiang, Y. Doekhi-Bennani and N. Stokhof, "Haalbaarheidsstudie AdOx. Een Next Generation Adsorptie - Oxidatieproces voor de Verwijdering van Organische Microverontreinigingen uit Stedelijk Afvalwater," STOWA 2022-10, Amersfoort, the Netherlands, 2022.